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Abstract

An investigation of the relative stability of the FeSi
structure and of some hypothetical polymorphs of FeSi
has been made by ®rst-principles pseudopotential
calculations. It has been shown that the observed
distortion from ideal sevenfold coordination is essential
in stabilizing the FeSi structure relative to one of the
CsCl type. Application of high pressure to FeSi is
predicted to produce a structure having nearly perfect
sevenfold coordination. However, it appears that FeSi
having a CsCl-type structure will be the thermodyna-
mically most stable phase for pressures greater than
13 GPa. Fitting of the calculated internal energy vs
volume for the FeSi structure to a third-order Birch±
Murnaghan equation of state led to values, at T = 0 K,
for the bulk modulus, K0, and for its ®rst derivative with
respect to pressure, K0

0, of 227 GPa and 3.9, respectively.

1. Introduction

Iron monosilicide ("-FeSi) crystallizes with an unusual
and intriguing structure (Pauling & Soldate, 1948). The
space group is cubic, P213 (Z = 4) with both Fe and Si
atoms occupying 4a (x, x, x) sites. In an idealized FeSi
structure, as shown in Fig. 1(a), xFe = +0.15451 and xSi =
ÿ0.15451; the primary coordination of each atom is then
seven equidistant atoms of the other kind, with six
equidistant atoms of its own kind as next-nearest
neighbours. The value of x required to produce this ideal
sevenfold coordination is given by x = 1/4�, where � is
the golden ratio, (1 + 51/2)/2 (see e.g. Wells, 1956).
Dmitrienko (1994) has suggested that this structure may
be considered as a crystalline approximate to an icosa-
hedral quasicrystal. In the ideal sevenfold structure the
seven atoms forming the primary coordination shell lie
at seven of the twenty vertices of a regular pentagonal
dodecahedron (Fig. 1b) with edges equal in length to
a/(�2), where a is the cubic cell parameter. The atoms
forming the nearest-neighbour coordination shell then
lie at a distance �a�3�1=2�=2� from the central atom and
have a closest separation from each other (equal to the
distance of the next-nearest neighbour coordination) of
a/�, this length being the diagonal of the pentagons.

Inorganic structures in which the primary coordination
results from occupation of the vertices of three of the
®ve regular Platonic solids (i.e. the tetrahedron, cube
and octahedron) are, of course, very common and it is of
interest to ®nd in FeSi a structure based on the fourth of
these polyhedra, the pentagonal dodecahedron.

In the real FeSi structure, shown in Fig. 1(c) (Pauling
& Soldate, 1948), both atoms are slightly displaced from
their ideal positions, with coordinates xFe = 0.137 (2) and
xSi = ÿ0.158 (4). This leads to nearest-neighbour
distances for the primary coordination shell of both Fe
and Si atoms of 2.294, 2.341 (� 3) and 2.515 (� 3) AÊ .
The six next-nearest-neighbour Fe atoms surrounding
each Fe atom lie at a distance of 2.753 AÊ , whereas the six
Si atoms which are the next-nearest neighbours of each
Si atom are at 2.781 AÊ . Thus, although both Fe and Si
atoms are still in essentially the same environment, their
coordination is subtly different. This feature is also
revealed by calculation of the bond angles for the
primary coordination shell; although the bond distances
are the same for both atoms, the bond angles are not.

As discussed in some detail in an earlier paper (Wood
et al., 1996), it is possible to regard the FeSi structure as
being derived from that of rocksalt by displacement of
both atoms along h111i directions, and thus to envisage
continuous phase transitions to either the sixfold coor-
dinated NaCl structure or (via the NaCl structure) to the
eightfold-coordinated CsCl type. The possibility of such
phase transitions provided the impetus for us to carry
out a study of FeSi by high-pressure neutron powder
diffraction (Wood et al., 1996). It was found that the
structure was essentially invariant over the accessible
pressure range (0±9 GPa), with no detectable tendency
either towards, or away from, the ideal sevenfold-
coordinated structure, a result which was con®rmed by
single-crystal X-ray diffraction using a diamond-anvil
cell (Ross, 1996). Lattice-parameter measurements to
much higher pressures (50 GPa) by powder X-ray
diffraction (Knittle & Williams, 1995) did not suggest the
presence of any structural phase transitions, even after
laser-heating to about 1500 K at 49 GPa (the published
data do, however, contain one point, at 36 GPa, which
lies well away from the PV curve on which the rest of the
data lie). Similarly, powder neutron diffraction studies
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both above and below room temperature (Watanabe et
al., 1963) suggested that there was little change in the
structure between 79 and 573 K. Recently, however,
experiments on thin ®lms of FeSi grown on silicon
substrates (von KaÈnel et al., 1992; Kafader et al., 1993;
von KaÈnel et al., 1994; Dekoster et al., 1997) have indi-
cated the formation of a CsCl-type structure, stable for
layers thinner than 890 AÊ , and it is known that RuSi
undergoes a transition from an FeSi-type to a CsCl-type
structure at 1578 (�15) K (Buschinger et al., 1997).

The physical properties of "-FeSi, and in particular its
compressibility, are currently of interest to Earth
scientists. Knittle & Williams (1995) obtained a value for
the bulk modulus of 209 (6) GPa (using X-ray powder
diffraction in a diamond-anvil cell to 50 GPa), which
they considered to be suf®ciently higher than that of
iron [165 (4) GPa; Mao et al., 1990] to eliminate the
possibility that silicon might be a major alloying element
in the Earth's outer core. However, other workers, using
a variety of techniques, have generally determined the
bulk modulus to be much less, viz. 172 (3) GPa (Guyot
& Zhang, 1995; Guyot et al., 1997; multi-anvil press to 10
GPa), 160 (1) GPa (Wood et al., 1995; powder neutron
diffraction to 9 GPa), 176 (3) GPa (Ross, 1996; single-
crystal X-ray diffraction to 7 GPa), 115 GPa (Zinoveva
et al., 1974; ultrasonics), 173 GPa (Sarrao et al., 1994;
resonant ultrasound spectroscopy).

It is clear, therefore, that there are a number of
aspects of the crystal structure and physical properties of
FeSi that merit further study, namely: (i) the stability, at
ambient pressure, of the sevenfold-coordinate FeSi
crystal structure relative to that of other simple high-
symmetry binary structure types, such as those of NaCl,
CsCl and NiAs, in which all atoms are in sixfold or
eightfold coordination; (ii) the extent to which distor-
tion of the structure from the ideal sevenfold-coordinate
form is important in determining its stability and the

mechanism by which this distortion is brought about;
(iii) the behaviour of the structure, and its stability
relative to that of CsCl etc., at high pressures; and (iv)
the compressibility of the material, especially under
conditions of high pressure.

Computer simulation provides a possible method with
which to address these points, with the advantage that it
is not constrained by the limitations of experiment. It
should, perhaps, be mentioned at this stage that
attempts to explain the structure and properties of FeSi
in simple terms have had only limited success. Fig. 2, for
example, shows the packing densities of the FeSi (ideal
form), CsCl, NaCl and NiAs structures as a function of
radius ratio r; it can be seen that for no value of r does
the FeSi structure have the densest packing. The
observed mean bond distance in FeSi is very close to the
sum of the atomic radii derived from the structures of
elemental Fe and Si, from which we conclude that an
appropriate radius ratio might be about 0.95 (�0.01),
with Fe as the larger atom. Thus, purely on the grounds
of packing, it might be expected that FeSi should
crystallize with the NiAs structure. Pauling & Soldate
(1948) attempted to explain the observed FeSi structure
by means of Pauling's resonating-valence-bond theory
of metals (Pauling, 1948) and put forward some quali-
tative arguments as to why the FeSi structure might be
preferred to that of NaCl, CsCl or NiAs. Although
Pauling & Soldate's treatment of FeSi is, perhaps, not
wholly convincing (requiring, for example, a somewhat
arbitrary neglect of Si±Si interactions if an unacceptably
high valence for Si is to be avoided), an interesting
consequence of their analysis is that it would seem to
imply that the small distortion of the FeSi structure from
its ideal form is essential. Their theory requires each Si
atom, for example, to use one of its four tetrahedral sp3

bond orbitals to form a non-resonating single bond with
the closest Fe atom at 2.29 AÊ ; the other three orbitals

Fig. 1. The ideal (a) and actual (c) FeSi structures (the Fe atoms are represented by the larger, darker spheres). All atoms lie on threefold axes in
the cubic unit cell. (b) shows the regular pentagonal dodecahedron surrounding the Fe atom at 0.15451, 0.15451, 0.15451 in the ideal sevenfold-
coordinated structure, seven of the vertices being occupied by Si atoms, and also illustrates the displacement of this Fe atom seen in the actual
structure (to 0.137, 0.137, 0.137), the displaced atom being represented by a lighter sphere. This displacement produces one short FeÐSi bond
(along [111]), three equal intermediate bonds and three equal longer bonds. The displacements of the Si atoms from their positions in the ideal
sevenfold-coordinated structure are much smaller, being less than those of the Fe atoms by about a factor of ®ve.
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then resonate between the three Fe atoms at 2.34 AÊ and
the three Fe atoms at 2.52 AÊ , the latter set being less
favoured.

Although computer simulations can now often
provide reliable predictions of the structures and prop-
erties of simple inorganic materials, it is apparent that in
the case of FeSi, a narrow band-gap semiconductor with
a balanced interplay between itinerant and localized
electronic states (Breuer et al., 1997), empirical inter-
atomic potential methods would provide a wholly
inadequate tool; instead ®rst-principles quantum-
mechanical calculations must be used, in which the wave
function of the valence and conduction electrons is
calculated explicitly. A number of band-structure
calculations for FeSi, using plane-wave (LAPW) and
muf®n-tin (LMTO) methods, have been made recently
(Mattheiss & Hamann, 1993; Jarlborg, 1995, 1997), but
these have been addressed almost exclusively towards
interpreting the observed electrical and, especially, the
unusual magnetic properties of the material. Mattheiss
& Hamann (1993), however, did perform comparable
LAPW calculations for FeSi with the atoms arranged as
in NaCl, concluding that the preference for the observed
structure was not driven by Fermi-surface effects, such
as those found in systems showing charge-density-wave

distortions or Peierls transitions. The density of states
near the Fermi level in FeSi is large, dominated by the Fe
3d component, and sensitive to small changes in the
atomic positions. Band-structure calculations of FeSi in
the CsCl modi®cation have been made by von KaÈnel et
al. (1992) and by Girlanda et al. (1994); in both cases it
was concluded that formation of this material as an
epitaxic layer on Si is associated with a compressive
strain, equivalent to an applied pressure of about
25 GPa. No calculations of FeSi with the NiAs structure
have been reported.

In our present study we have used a pseudopotential
method, in which approximations are made to describe
the potential associated with the core electrons and only
the electron density owing to valence and conduction
electrons is explicitly calculated; this results in a signif-
icant reduction in computational requirements from that
required for all-electron calculations, thereby enabling
the phase diagram of the various hypothetical poly-
morphs of FeSi to be explored in detail. This method has
recently been shown to be very successful in predicting
the static properties and equation of state of solid iron
(VocÏadlo et al., 1997). Incorporation of the effect of
atomic vibrations owing to temperature is, however, a
computationally very expensive process and so it has not
been included in the present calculations; these are,
therefore, effectively all at 0 K and thus in the present
study only the P,V,0 section of the P,V,T phase diagram
is accessible. In view of the apparent insensitivity of the
FeSi structure to changes in temperature (Watanabe et
al., 1963) we do not believe that this is a serious
limitation when addressing the relative stability of the
different possible structures at room temperature. The
effect of thermal activation on the physical properties of
the material is, however, known to be large, owing to the
narrow band gap, and thus the neglect of temperature
may lead to serious errors when calculating even such
quantities as the elastic constants, which are known to be
quite temperature dependent (Sarrao et al., 1994).

2. Calculation method

The calculations presented here are based on density
functional theory within the generalized gradient
approximation using ultrasoft non-norm-conserving
Vanderbilt pseudopotentials, implemented in the
computer program VASP (Vienna ab initio simulation
package; Kresse & FurthmuÈ ller, 1996a,b). In this
method, the valence orbitals are expanded as plane
waves and the interactions between the core and valence
electrons are described by pseudopotentials. For Fe, the
3p electrons were treated as valence electrons (i.e. an
[Ne]3s2 core was assumed), an assumption which was
found to be essential for successful simulations of iron at
high pressures (VocÏadlo et al., 1997); for Si an [Ne] core
was assumed. The pseudopotential concept requires that
the scattering properties of the pseudo-atom and of the

Fig. 2. Hard-sphere volume packing densities for some simple AB
structures as a function of the radius ratio, r = RB/RA. The values for
NiAs-I correspond to a structure in which the larger A atoms form
two close-packed planes stacked directly above each other; the
smaller B atoms then occupy interstices with trigonal prismatic
coordination midway between the planes of A atoms. In NiAs-II,
the A atoms form a hexagonal close-packed structure with the B
atoms ®lling the octahedral interstices. In both the NiAs structures it
is assumed that the planes of A atoms remain close-packed
throughout; for values of r greater than those required to prevent
`rattling' of the B atoms, the two arrangements will have the same
packing density. Note that the critical value of r required to prevent
`rattling' for the CsCl structure and for the ideal sevenfold-
coordinated FeSi structures is identical [equal to (3)1/2 ÿ 1]; this is a
consequence of the geometry of the pentagonal dodecahedron,
within which it is always possible to inscribe a cube of side equal in
length to the diagonal of the pentagons.
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exact atom are the same at a speci®ed radius, Rmatch;
inside this matching radius the pseudo-wave functions
are nodeless and only approximate. This condition poses
a serious problem for ®rst-row transition metals as it
necessitates a very large basis set to represent the core
electrons. A computationally ef®cient solution to this
problem was proposed by Vanderbilt (1990) via the use
of non-norm-conserving pseudopotentials, in which
correction for the difference between the exact and
pseudo-charge density is achieved by using localized
augmentation functions centred on each atom. This
approach results in signi®cantly smoother, `softer' (i.e.
requiring smaller basis sets) pseudo-wave functions. The
new ultrasoft pseudopotentials give results which are
very close to, or even indistinguishable from, those
obtained with the best all-electron ®rst-principles
methods currently available. Details of the construction
of the pseudopotentials used in the present work are
given by Kresse & Hafner (1994) and Moroni et al.
(1997).

A further point requiring some care is the modelling
of the exchange-correlation energy, described by the
generalized gradient approximation (GGA). It has been
shown, for example, that the GGA must be used if an
accurate description of the ground-state properties of
iron is to be obtained at ambient pressure (Singh et al.,
1991) and that neglect of the GGA strongly affects
results at high pressure (SoÈ derlind et al., 1996). In the
present work, we have used a GGA based on the local
density approximation of Ceperley & Alder (1980) (in
the parametrization of Perdew & Zunger, 1981) and the
gradient corrections according to Perdew et al. (1992).
All of the pseudopotentials have been constructed with
non-linear partial core corrections (Louie et al., 1982).
When using VASP, the ground state is calculated exactly
for each set of ionic positions using an ef®cient iterative
matrix diagonalization scheme and a Pulay mixer (Pulay,
1980). A smearing method was used to avoid problems
with level crossing, and the electronic free energy was
taken as the quantity to be minimized. Relaxation of
atomic coordinates and axial ratios is allowed by the
program; when performing such operations these para-

meters are changed iteratively so that the sum of the
lattice energy and electronic free energy converges to a
minimum value. Further details of the computational
method are given by Kresse & FurthmuÈ ller (1996a,b).

The calculations discussed below were carried out
using the primitive unit cells for the FeSi-, CsCl- and
NiAs-type structures and the conventional face-centred-
cubic unit cell for the NaCl-type. In the case of the NiAs-
type two variants are possible. In the ®rst, the Fe atoms
take coordinates within the hexagonal unit cell of
(0, 0, 0) and (0, 0, 1/2), with the Si atoms at (1/3, 2/3, 1/4)
and (2/3, 1/3, 3/4); in the second, the two sets of coor-
dinates are occupied by the other type of atom. It was
found that the ®rst arrangement, which leads to a simple
hexagonal substructure of Fe atoms, was the more stable
(see below). The number of sampling points in reci-
procal space used in the calculations was increased until
further increase produced a change of less than
0.001 eV atomÿ1 in the calculated internal energy,
equivalent to more than a factor of forty less than the
smallest difference in energy between the various
structures considered. This convergence condition
required, for example, the use of a 5 � 5 � 5 grid of k
points for the FeSi-type structure, leading to 11 k points
in the symmetry-irreducible volume of the Brillouin
zone; sampling points with similar separations in reci-
procal space were used for the other structures. Calcu-
lation of the electronic density of states (DOS) was
performed over intervals of approximately 0.09 eV in
energy. We believe, therefore, that the present calcula-
tions are suf®ciently accurate for our discussion of the
different potential FeSi polymorphs, although it might
be possible to improve upon them in matters of detail.

The procedure adopted to determine the equations of
state was to use VASP to calculate the internal energy
(E) of the crystal at a set of chosen volumes (V). For the
NaCl and CsCl modi®cations there are no parameters to
relax; the NiAs-type structure requires relaxation of the
c/a ratio. In the case of the FeSi-type structure, two sets
of calculations were made, the ®rst with the atoms ®xed
at the ideal sevenfold-coordinate value, x = �0.15451,
and the second with the fractional coordinates of both

Table 1. Predicted crystal structures and physical properties of hypothetical FeSi polymorphs

The values of E0, V0, K0 and K0
0 were found by ®tting to a third-order Birch±Murnaghan equation of state (for details see text).

E0 (eV atomÿ1) V0 (AÊ 3 atomÿ1) Cell (AÊ ) Relaxed coordinates K0 (GPa) K0
0

NaCl-type ÿ6.556 12.74 a = 4.671 163 3.9

NiAs-type ÿ7.137 11.39 a = 2.736 c/a = 2.570 195 4.7
c = 7.030

CsCl-type ÿ7.267 10.61 a = 2.768 226 5.4

FeSiideal (x = �0.15451) ÿ7.249 11.06 a = 4.456 224 4.5

FeSireal ÿ7.309 11.11 a = 4.463 xFe = 0.1367 227 3.9
xSi = ÿ0.1591
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Fe and Si allowed to vary. Although no symmetry
constraints were imposed during the relaxation of these
coordinates, they retained the form x, x, x to within the
expected precision of the calculations (see below).
When calculating the electronic density of states for the
relaxed FeSi structure, however, the coordinates were
returned to their correct symmetrical form as this
greatly increases the speed and accuracy of the calcu-
lations. Since T = 0, the pressure (P) at any point on the
E vs V curve may be found using the standard thermo-
dynamic result P � ÿ�@E=@V�T�0 (see e.g. Pippard,

1966), the actual values being determined by ®tting the
E vs V curve to a sixth-order polynomial in V. Knowing
P, V and E, the enthalpy H may be calculated. Since
T = 0, the enthalpy is equal to the Gibbs free energy, G,
and thus the most stable phase at any given pressure
may be determined; for the special case of ambient
pressure �P ' 0;T � 0�;G � E and the relative stabi-
lity of the different polymorphs can be determined
simply from the positions of the minima in the E vs V
curves.

3. Results and discussion

3.1. Behaviour at P = 0

Fig. 3(a) shows E vs V curves for all of the potential
FeSi polymorphs considered. The values of E and V at
the minima of the curves (i.e. at P = 0) are given in
Table 1, together with the corresponding unit-cell
parameters and the fractional coordinates of the relaxed
FeSi structure. It can be seen that the FeSireal structure is
the most stable, the order of stability of the different
structures being FeSireal > CsCl-type > FeSiideal > NiAs-
type (> NiAs-type, second variant) � NaCl-type (the
subscripts `real' and `ideal' refer to the observed FeSi
structure and its ideal sevenfold-coordinated variant,
respectively). The fractional coordinates predicted by
VASP for the FeSireal structure are xFe = 0.1367 and xSi =
ÿ0.1591; the uncertainty in both, estimated from the
spread across values which were expected to be
equivalent by symmetry, is �0.0001. These results are in
extremely good agreement with the coordinates deter-
mined by Pauling & Soldate [1948; xFe = 0.137 (2), xSi =
ÿ0.158 (4)] and by Wood et al. [1996; xFe = 0.1359 (3), xSi

= ÿ0.1581 (4)]. The predicted lattice parameter is
4.463 AÊ ; applying a correction for thermal expansion
between 0 and 300 K, based on the low-temperature
data of Watanabe et al. (1963), increases this value to
4.473 AÊ , which is 0.4% smaller than that reported by
Pauling & Soldate (1948) and Wood et al. (1996). Again,
this agreement is very good and it appears, therefore,
that the pseudopotential method is able not only to
determine correctly the stable polymorph at ambient
pressure but also to reproduce the observed crystal
structure with an accuracy approaching that to which it
has been determined experimentally.

Table 1 shows that the stability of the FeSireal struc-
ture with respect to the NaCl-type structure is about
1.5 eV per formula unit, in good agreement with the
value of 1.6 eV/FeSi given by Mattheiss & Hamann
(1993); the NaCl structure is, therefore, energetically
very unfavourable. The energy differences with respect
to the remaining possible structures are much less, being
'0.34 eV/FeSi for the NiAs-type, '0.12 eV/FeSi for
FeSiideal and '0.08 eV/FeSi for the CsCl-type. The
densest structure is the CsCl-type, our predicted lattice
constant of 2.768 AÊ being in good agreement with the

Fig. 3. (a) Internal energy vs volume for all of the different structure
types considered. Calculated values are indicated by points, the full
lines being polynomial ®ts to the data (see text). In NiAs-I and
NiAs-II the Fe atoms occupy the sites speci®ed for the A atoms in
the caption to Fig. 2 (for further details see text); a complete set of
calculations was not made for NiAs-II, as it was the less stable of the
NiAs structures. (b) Internal energy vs volume for the CsCl-type,
FeSireal and FeSiideal structures. Note that the distortion of FeSi from
the ideal sevenfold-coordinated structure is essential for stability
with respect to the CsCl-type. The common tangent to the curves for
the CsCl-type and FeSireal structures indicates that the former will
be stable for pressures greater than 13 GPa (for details see text).
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values of 2.717 AÊ (von KaÈnel et al., 1992) and 2.778 AÊ

(Girlanda et al., 1994) previously obtained by computer
simulation and in excellent agreement with the experi-
mental value, 2.77 (1) AÊ , of von KaÈnel et al. (1995). Our
results show, therefore, that the distortion of the
observed structure from that of FeSiideal is an essential
requirement if it is to be stable with respect to the CsCl-
type. The FeSiideal structure was found to be unstable
with respect to FeSireal over the whole of the range of
pressure investigated; calculations in which the atoms
were allowed to relax from their perfect sevenfold
coordinates invariably led to the FeSireal structure.

Some insight into the reasons why FeSi adopts the
observed structure can be gained by considering the
calculated electronic density of states, shown in Fig. 4.
As pointed out by Mattheiss & Hamann (1993) the band

structure of FeSi is such that it is dif®cult to provide a
quantitative representation of the DOS near the Fermi
level, EF, unless an unfeasibly large sampling grid in
reciprocal space is used. Nevertheless, our results are
qualitatively similar to those of Mattheiss & Hamann
(1993) and Grechnev et al. (1994); in particular, they
predict that the material will be a semiconductor with a
band gap of about 0.1 eV. However, although Fermi-
surface effects may well be responsible for the unusual
electrical and magnetic properties of FeSi (in particular
for their similarity to those of the so-called `Kondo
insulators', materials in which there is hybridization
between a localized electron state and the conduction
band; see e.g. Schlesinger et al., 1997) they cannot
provide the explanation for the observed crystal struc-
ture. As remarked by Mattheiss & Hamann (1993), CrSi,

Fig. 4. Electronic density of states calculations for FeSi. (a) Total density of states (DOS). (b) Local DOS (LDOS) for Fe. (c) LDOS for Si. (d)
Total number of states (NOS). The position of the Fermi level, EF, is indicated by a vertical line. Note that NOS is horizontal at EF, indicating
that the material is non-metallic. Core electrons are excluded from the calculation, the initial value of NOS = 24.0 being due to the Fe 3p
electrons which lie in highly localized states over 50 eV below EF.
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MnSi, FeSi and CoSi are isostructural, showing a very
similar degree of deviation from the ideal sevenfold-
coordinate structure (BoreÂn, 1933). CrSi and MnSi are
metallic, FeSi is a narrow-gap semiconductor and CoSi is
a semi-metal (Shinoda & Asanabe, 1966). These differ-
ences in electrical conductivity are readily interpretable
by assuming that the compounds have similar densities
of states, with the positions of the Fermi levels deter-
mined by the number of available electrons (Evangelou
& Edwards, 1983). Thus it is apparent that the exact
position of EF within the DOS is not fundamental to the
formation of the FeSi crystal structure.

The common factors leading to the formation of the
observed FeSi structure would seem to be the presence
of Si and of an element near the centre of the 3d or 4d
blocks in the periodic table (RuSi is also isostructural).
We believe that a better understanding of the bonding in
this material may be obtained by combining information
obtained from the local density of states (LDOS) with a
more `chemical' approach. The LDOS calculated by
VASP allows projection of the DOS associated with
each of the atoms in the structure and, additionally,
allows discrimination between electrons with s-, p- and
d-like character. Considering ®rstly the Fe atom
(Fig. 4b), it can be seen that, as expected, the DOS near
the top of the valence band is dominated by the
contributions from the Fe d electrons; the Fe 3p elec-
trons lie in highly localized states over 50 eV below EF

(not shown in Fig. 4) and thus make no contribution to
the bonding. There is, however, a signi®cant Fe p elec-
tron contribution to the DOS in the range from about 2
to 4 eV below EF, which must, therefore, come from the
Fe 4p orbitals. Examination of the LDOS for Si (Fig. 4c)
reveals several interesting features: ®rstly, there is a
signi®cant contribution to the DOS from Si, as well as
from Fe, in the energy range from about 2 to 6 eV below

EF, thus indicating that there is a strong degree of
covalency in the bonding; secondly, the contribution
from Si contains a large component of d-like character,
as well as s and p. The possibility of a signi®cant degree
of hybridization involving the Si d orbitals was not
considered by Pauling & Soldate (1948), who restricted
their discussion to Si sp3 hybrids. A detailed calculation
of the bonding scheme in the FeSi structure is beyond
the scope of the present paper. Nevertheless, we believe
that our results are suf®cient to show that the stability of
the structure arises from the degree of covalency
allowed by this atomic arrangement.

3.2. Behaviour at high pressure

In discussing the behaviour at elevated pressure, two
main questions must be addressed ± the predicted
change in the observed FeSi crystal structure under
compression and the possibility of phase transforma-
tions to other polymorphs. Fig. 5 shows the changes in
xFe and xSi as a function of pressure. It can be seen that
the magnitudes of the fractional coordinates tend to
become equal as P increases and show a clear trend
towards the ideal sevenfold-coordinated structure.
However, although both coordinates seem to tend
asymptotically towards values in the range 0.149 < |x| <
0.154, neither appears to be approaching exactly the
value of �1/4� = �0.15451, a possible reason for this
being the covalent nature of the bonding discussed
above. At the highest pressures considered, the frac-
tional coordinates of Fe and Si differ from their ideal
sevenfold values by 0.006 and 0.0008, respectively.
Examination of the calculated DOS shows that, even for
pressures in excess of 500 GPa, the band gap is retained
(increasing slightly to �0.2 eV) and thus the material
does not appear to show a metal±insulator transition.
Interestingly, calculations of the DOS for FeSiideal at
ambient pressure suggested that the band gap had
narrowed to the point of closure and that, were such a
material to exist, it might show metallic behaviour. A
calculation for FeSiideal above 500 GPa, however, indi-
cated a very narrow band gap (�0.01 eV). This sensi-
tivity of the calculated band structure to small changes
(�0.005) in the atomic fractional coordinates has also
been reported by Mattheiss & Hamann (1993).

Fig. 5 also explains the relative insensitivity of the
crystal structure to pressure, reported by Wood et al.
(1996). Over the pressure range accessible in their
neutron powder diffraction experiment (0±9 GPa), the
expected change in xFe is of order +0.001 and that in xSi

ÿ0.0007. Examination of the experimentally determined
coordinates at 0 and 6.3 GPa do, indeed, show an
increase in xFe of 0.0010 (5) and a decrease in xSi of
0.0008 (6) but such changes are not statistically signi®-
cant. Experimental con®rmation of the behaviour shown
in Fig. 5 would appear, therefore, to require an increase,
by at least a factor of ®ve, in either the accessible

Fig. 5. Fractional coordinates for the Fe and Si atoms as a function of
pressure (for convenience |xSi| is plotted). The value of x required
for the ideal sevenfold-coordinate structure is shown by the
horizontal bar.
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pressure range or in the precision to which the fractional
coordinates are determined; neither of these require-
ments can be considered to be easily achievable at
present.

Probably the most interesting aspect of the present
work is that it indicates that FeSi having the CsCl-type
structure will be the thermodynamically most stable
phase for pressures greater than about 13 GPa. This
point is best illustrated in Fig. 3(b), using the method of
common tangents. Since T = 0, the Gibbs free energy G
is equal to the enthalpy H. In addition, since
P � ÿ@E=@V, it may easily be shown that any straight
line on a graph of internal energy vs volume is a line of
constant H, lines with steeper negative slopes having
higher enthalpy values. Thus, if two E vs V curves are
joined by a common tangent, the corresponding phases
will be in thermodynamic equilibrium. The common
tangent, shown in Fig. 3(b), connecting the E vs V curves
for the FeSireal and the CsCl-type structures has a slope
of ÿ0.081 eV AÊ ÿ3, equivalent to a transition pressure of
13 GPa. Calculation of the enthalpies for the two phases
con®rmed this result. Experimental evidence for the
stability of a CsCl-type phase is provided by the obser-
vation that thin ®lms of FeSi with the CsCl-type struc-
ture may be grown on silicon substrates (von KaÈnel et
al., 1992; Kafader et al., 1993; von KaÈnel et al., 1994;
Dekoster et al., 1997). It has been suggested that
formation of this material as an epitaxic layer on Si is
associated with a compressive strain, equivalent to an
applied pressure of about 25 GPa (von KaÈnel et al., 1992;
Girlanda et al., 1994). Bearing in mind the approxima-
tions inherent in making this estimate, which required
comparison of the lattice parameter of CsCl-type FeSi,
derived from band-structure calculations, with the
known cell parameter of silicon, we consider this result
to be in satisfactory agreement with that found in the
present work. The only experimental study to date of
bulk samples of FeSi at pressures above 10 GPa is that of
Knittle & Williams (1995), who found no evidence of
any phase transitions, their study including X-ray
examination of a sample that had previously been
heated to about 1500 K at 49 GPa. Direct transforma-
tion of FeSi to a CsCl-type structure is, however, likely
to require a very high activation energy. A continuous
path between the two is possible via the NaCl-type but,
at ambient pressure, an NaCl-type phase is over
1.5 eV/FeSi higher in energy. It is thus likely that both
the FeSi structure and the CsCl-type structure (assuming
it exists) will be highly metastable. In this present study
we have been unable to address the question of the
stability of the different polymorphs with regard to
temperature. The only high-temperature structural
study reported is that of Watanabe et al. (1963), who
found that the fractional coordinates at 573 K were
essentially unaltered from their room-temperature
values. More recently, Guyot et al. (1997) measured the
thermal expansion of the material by X-ray powder

diffraction at temperatures up to 1070 K, again ®nding
no evidence for a phase transition. However, both of
these studies were carried out at temperatures well
below the FeSi melting point (1683 K). In view of the
fact that RuSi is known to show a transition from the
FeSi to the CsCl structures at 1578 K (Buschinger et al.,
1997) it would be of considerable interest to investigate
the behaviour of FeSi over a wider temperature range.

3.3. Compressibility

The ®nal aspect of the behaviour of FeSi addressed in
the present study is the question of its compressibility.
By integration of the standard Birch±Murnaghan third-
order equation of state relating P and V (see e.g. Poirier,
1991) the equation

E�V� � E1 � E2 � E3

is obtained, where

E1 � �9=4�K0V0�V0=V��0:5�V0=V�1=3

ÿ �V=V0�1=3�;
E2 � �9=16�K0�K00 ÿ 4�V0�V0=V���V0=V�

ÿ 3�V0=V�1=3 � 3�V=V0�1=3�
and

E3 � E�V0� ÿ �9=16�K0V0�K00 ÿ 6�:
V0 is the volume of the phase at P = 0 and E�V0� is the
corresponding internal energy. K0 is the (isothermal)
bulk modulus (since T = 0 K, the adiabatic and
isothermal bulk moduli will be equal) and K0

0 is its ®rst
derivative with respect to pressure. Fitting of the E vs V
data for FeSireal to this equation gave values of 227 GPa
and 3.9, respectively, for K0 and K0

0. K0 was found to be
effectively invariant both with respect to the equation of
state adopted (showing a range of only �1 GPa for nine
different equations of state, e.g. Murnaghan, Birch±
Murnaghan second-order, Vinet etc.) and with respect to
the pressure range used (restriction of the data, for
example, to pressures less than 10 GPa gave values of
K0 = 225 GPa and K0

0 = 2.5). In addition, our value for
the bulk modulus is in very good agreement with that
(220 GPa) obtained by Jarlborg (1995, 1997) using an
LMTO method (a result which, however, he considered
to be an overestimate). The values of K0 and K0

0

obtained in the present study for FeSi in the CsCl-type
structure are 226 GPa and 5.4, which are again in
reasonable agreement with the calculated bulk moduli
of 263 and 280 GPa reported by von KaÈnel et al. (1992)
and Girlanda et al. (1994), respectively. Values of K0 and
K0
0 for the other structures considered here are listed in

Table 1.
However, although there is adequate agreement

between the various calculated values of K0, the agree-
ment with results obtained experimentally is much less
satisfactory. Measurements of the elastic constants of
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FeSi at low temperatures have been reported by
Zinoveva et al. (1974) and by Sarrao et al. (1994). In both
cases the behaviour of the material was found to show a
strong temperature dependence, which was attributed to
the narrow band gap in the material. Zinoveva et al.
(1974) reported a decrease in the bulk modulus of about
12% between 80 and 300 K; inspection of the data
published by Sarrao et al. (1994) suggest a somewhat
smaller change, of about 7.5%, between room
temperature and 0 K. Application of these temperature
corrections to our calculated result for K0 produces a
value in the range 200±210 GPa. Although this is in
exact agreement with the experimental result of Knittle
& Williams (1995), 209 (6) GPa, it is much higher than
that obtained by all other workers ± values in the range
160±176 GPa having been reported by Sarrao et al.
(1994), Guyot & Zhang (1995), Wood et al. (1995), Ross
(1996) and Guyot et al. (1997). We are, at present,
unable to explain this discrepancy. The experiments
performed by Knittle & Williams (1995) covered a much
greater pressure range than was accessed in the other
studies but our present calculations, in which the derived
value of K0 was found to be effectively independent of
the pressure range chosen, suggest that this should not
lead to any experimentally observable differences in
behaviour. Conversely, it has been shown recently
(VocÏadlo et al., 1997) that ab initio calculations within
the generalized gradient approximation, similar to those
reported here, are capable of producing bulk modulus
values for the body-centred-cubic phase of iron which
are in excellent agreement with experiment; we are,
therefore, unable to point to any obvious weakness in
the calculation method adopted, such as might have
pertained had the local density approximation been
used (Sasaki et al., 1995). It seems likely that this
problem is now only resolvable by further experimental
work. One possible source of variation lies in the stoi-
chiometry of the samples used. The Fe±Si phase diagram
(KoÈ ster & GoÈ decke, 1968) indicates that the FeSi
structure is stable over a range of compositions,
FexSi1ÿx, for values of x in the range from about 0.494 to
0.506. Relative to the exactly stoichiometric compound,
crystals rich in Si will be electron de®cient and vice
versa. In view of the known strong temperature depen-
dence of many of the physical properties of this material,
attributable to thermal excitation across the narrow
band gap, it seems possible that variations in composi-
tion might give rise to similar effects by changing the
electron occupancy levels near EF.

Technical assistance from G. Kresse is gratefully
acknowledged. We would also like to thank J. Brodholt
and M. Gillan for helpful discussions.
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